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ANALYSIS OF A HIERARCHICAL TWO - PERSON DIFFERENTIAL GAME* 

A.F. EEEIMENOV 

A hierarchical differential two-person game is formulated, with the dynamics 
described by a non-linear differential equation of fairly general form, 
and containing the terminal payoff functions. The formalization of an 
antagonistic differential game introduced in /l, 2/ is used to determine 
the optimal strategies and to reveal their structure. The optimal 
strategies forming the Pareto point /3/ of the set of equilibrium coalition 
strategies, unimprovable for the upper level player are described. The 
basic assumptions (declaration by the player of the upper strategy level 
up to the stary of the game, and the rationality of the choice of the 
strategy by the lower level player) go back to /4, 5/, where the static 
models were studied. Hierarchical dynamic games were studied, in 
particular, in /6-0/. The present paper is related to the work done in 
/l, 2, 6, g-11/. 

1. Let the controlled system be described by an equation of the form 

5' = f (t, z, u, v), u E P, u E Q (1.1) 

where z is an n-dimensional phase vector, u and v are the vector controls of the first and 
second player of dimension p and g respectively, and P and Q are compacta. The function 
f :G X p X Q- R"is continuous over the set of its arguments and satifies the Lipshitz condi- 
tion in 3. Here G is a ccxnpactum in R’ X R", whose projection on the t axis is equal to the 
given interval It,, al. It is assumed that all trajectories of system (1.1) originating at 
an arbitrary position (t,, x+)EG remain in G for all tE[t,,81. 

The first player strives to choose his control u at the given instant t, so that when 
the system is taken from its initial position (t,,z,)E G to the state x[e)the quantity 
(Jr (5 Ml) is minimized; at the same time the second player strives to minimize the quantity 
U, (x [e]). Here Ui : R" i+ R' (i = 1,2) are given continuous functions. We assume that both 
players know the phase vector of the system x[t] at the given instant. 

Below, the actions of the players in the non-antagonistic differential game will be 
formalized in the same classes as in the general theory of positional antagonistic differential 
games /l, 2/. Namely, in the general case when the saddle-point condition in a small game /l/ 
is not satisfied, depending on the amount of information avaialble to the players about the 
controls realized by the partner, we can have the following pairs of classes of player actions: 
{pure stategies of the first player - counterstrategies of the second player ), { mixed 

strategies of the first player - mixed strategies of the second player } , and {counterstrateg- 
ies of the first player - pure strategies of the second player }. We shall limit our discus- 
sion, forsimplicity, to the case when the condition of the saddle point in the small game holds 
for the function f. Then the actions of both players will be considered in the classes of pure 
strategies. Nevertheless, the results obtained below hold also in the general case. 

We identify the strategy of the first player with the pair u = (u(t,x,E), PI(e)}, where 
~(t,z, E) is an arbitrary function defined for (t, x) E G, e > 0, with values in P, and fil(.)s 

A (0, M). We denote by A(0, oo) the class of functions p: (0, m)u (0, v) continuous and mono- 
tonic, satisfying the condition that fi (e) - 0 as E - 0. The concept of the strategy as a 
function of position (t,z) and.the accuracy parameter e was introduced in /2/. The addition 
of the function PI(.) has technical reasons, and its meaning will be discussed below at the 
end of Sect.2. Similarly we adopt, as the strategy of the second player, the pair v = (u (t, z, 

s), Bz (a)) where the function v(t,x, E) is defined when (t,x)E G, E >O and takes values in Q, 
while Q, a pz (a) C? A (0, m). 

we further assume that the starting position (t,,z,)EG is fixed. Let the strategies 
LJ and V be given, and let e1 and e2 the values of the accuracy parameter E chosen by the 
first and second player respectively. Let A1 = (ri(l)} and A2 = {tjc2)} be the partitions of the 

segment [t,, 61 by the System of non-intersecting half-intervals [am, r$)and [tj(z), r$,) Chosen by 
the first and second player respectively under the conditions that S(A,)< ps(a,) (s =I,?) where 

6 (A,) is the step of the partition As equal to maxi($\ -r?'). 
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We shall call the continuous function 

x~~[t]=x~;,~~*[t,1*,5*,U, V] 

satisfying the stepwise differential equation 

the Euler polygonal line generated by the strategies U and V from the starting position (t,,x,) 
for the chosen values of Em and e2 and the partions A1 and As. We shall call the continuous 

function 2 It] = xlt, t,, x*, V, VI ,f . 
h' e.r 

or which a sequence of Euler polygonal lines zt,1(,&,k It, tek, I*', 

-77, VI can be found, unformly converging to xltl on It,,61 as k_, 00, E," - 0, Elk - 0, tek --f t,, 

+k -, x*, 6 (A,@)) < fj. (E:), S = I,2 , the motion generated by the strategies U and V from the 

starting position (t,,z,). Henceforth we shall assume without loss of generality, that E < ek. 2\1 
Indeed, the chances of the second player remain undiminished, since the "scale" of its accur- 
acy parameter can be adjusted accordingly. A pair of strategies generates, generally speaking, 
a bundle of motions which we shall denote by X(t*,x*, V, V). The bundle will be a compactum in 
c it*, 61. 

We assume that both players have complete information about the system, i.e. they know 
equation (l.l), the sets P and Q, and the objective functions u1 and uI. 

We shall introduce the following assumptions. 
A. The first player chooses his strategy u* = {u*(t,z, E), PI*(e)} up to the beginning of 

the game, and communicates it to the second player. 
B. The second player, having received the information about the strategy i?chosen by 

the first player, chooses a rational strategy V+ = {u* (t, x, e), fJz* (e)} from the condition 

min mar GZ\ x16, t,, r*, v*, VI) = 
v X[.IEX(I..x*.U*.V) 

max 02 (5 16, t,, x*7 
I I.1 EX (t..=,. U'S V') 

v*, V*l) = p* (t*, z*, P) 

(1.2) 

When assumptions A and B are both satisfied, we shall call the first player the upper 
hierarchy level player, and second the lower level player, and the differential game in ques- 
tion thehierarchical game. 

We shall not discuss the general case of the existence of the strategy V*. We shall 
merely note that rational strategies v* exist for the strategies v*which will be studied 
below. We shall denote the set of rational strategies of the second player corresponding to 
the disclosed strategy v*of the first player, by K(~*,x,, V*). The following poperty of the 
rational strategies holds: for any strategy V* E K (t,, ztr U*) a motion x* I.1 E X_(t,, x*, V*, V*) 
can be found, for which 

Be (x* K+l) < yo (t, 5* Id), vt E It,, 61 (1.3) 

Here yz(t,z) is the cost function of the antagonistic game rr continuous for (t, 4 E G, 
whose dynamics are described by equation (1.1) and in which the second player dealing with the 
control v strives to minimize the quantity a,(xI*]), while the firstplayer opposes him. 

We know that such a game /2/ has universal saddle point 

(1.4) 

To formulate the condition (1.2) in approximate form, we shall make one more assumption. 
C. The first player chooses at the beginning of the game the value el of his accuracy 

parameter and conveys it to the second player. 
If assumption C holds, then condition (1.2) means that for every c>O we can indicate 

x (<)> 0 such that for any e, < x(c), e, < E,, and any partions AI, Al, 6(A,)< PI* (e,), s = 1,2 
the following inequality holds: 

02 (x”;:,“:. NJ, t*, 5*, v*, v*u < p* P*, x,, v*) + 6 
((It* - t, 12 + IIx* - r+lFY < min 0%" (s,), B,* (s,)) 

(1.5) 

The fact that the second player is given the value of e, only simultaneously with the 
start of the game, prevents him from using this information to sharpen his rational strategy. 
The information about e1 is used by the second player in choosing the value ep of his own 
accuracy parameter so as to ensure the inequality e,<e, during the construction of the Euler 
polygonal lines. 

Thus when the first player discloses his strategy U, the second player has at his disposal 
a set of rational strategies K(t*,z*, v), and any strategy VEK(~,,Z,,V) guarantees the 



second player a result equal to p*(t,,z,, V). At the same time, the result obtained by the 
first player depends, generally speaking, on what strategy the second player selects from the 
set K (t*, x*, U). 

We shall distinguish between two cases. 

Case 1. The second player chooses a rational strategy from the set h (t*, x*, U) in an 
arbitrary manner. 

Clearly, in case 1 the guaranteed result of the first player upon his disclosure of the 
strategy LI, will be 

sup max 
VEW.. 3c.S u)xI~1EXu..x.,LI,V) 

Ol(Z[@, t*,5*,u,q =p (V) (t.6) 

Case 2. The second player shows goodwill towards the first player and chooses the rational 
strategy V from the condition 

min max 
V.Erw.,X..U) I[~lEXd.,=*,U.V*) 

Q(2Ift,t*,f*, V,V*l)= (1.7) 

x,,lEx;;; u ") G(~[~tt*v *+* u, Vl)=PW 
I l * I 

In (1.7) we write min and not inf, in view of the fact that for the strategies u dealt 
with here, the minimum is attained on the set K(t,,x,, U). The quantity p@)(U) will represent 
a guaranteed result for the first player when he discloses his strategy in case 2. 

We shall agree, below, to speak simply of a hierarchical differential game in case 1, and 
of a hierarchical differential game with a benevolent second player in case 2. 

Problem 1. To find the strategy of the first player u" = {u" (t, x, e), PI0 (e)} such that 

p(l) (VD) = rninuf#) (U) (1.8) 

Problem 2. To find the strategy of the first player U, = {uO (6 5, 4, PI0 (41 Such that 

p(z) (U,) = minu p(a) (U) (1.9) 

Definition 1. We shall call the strategy u", which is a solution of Problem 1, the 
optimal strategy of the first player in a hierarchical differential game. We shall call the 
otpimal strategy of the second any strategy from the set K(t*,x*. U’). 

Definition 2. We shall call the strategy U,,, which is a solution of Problem 2, the 
optimal strategy of the first player in a hierarchical differential game with a benevolent 
second player. We shall call the optimal strategy of the benevolent second player, any strat- 
egy from the set K(t*,x*, U,) satisfying the condition (1.7). 

Let us formulate the following auxiliary optimal-control problem. 

Problem 3. Let the dynamics of the controlled system be described by Eq.(l.l). The 
problem is to find a pair of measurable functions (u(t), v(t), t,<t <6), furnishing the quant- 
ity a,(~@)) with a minimum subject to the condition 

% (2 @)) < Yt 6 S 0% t* -s t < 6 (1.10) 

where va(t,z) is a cost function of the antagonistic game r, and S(t), t, < t<@ is a tra3- 
ectory of system (1.1) generated by the controls u(a) and u(e) from the starting position 

(&, r+). The trajectoriesofsystem (1.1) satisfying inequality (1.10) willbe called admissible. 
It can be shown that the set Of admissible trajectories is non-empty and compact in the metric 
of the space C[t,,61, provided that we also assume that the vectogram 

Q" (4 4 = {q E R" : q = f (6 2, u, 4, u E P, v E Q) (1.11) 

is convex. Then a solution to Problem 3 exists. 
2. Let a pair of measurable functions u*(e), v*(.) supply the solution of Problem 3 with 

S* (.) representing the corresponding trajectory. Using Luzin's theorem, we can find families 
ofiRc(o;tinuous functions (uz (.)), (vu(.)) #such that 112"(t) -x* (f)Ij <e for all t E l&,6]. Here 

* is a trajectory of system (1.1) generated by the controls u"(.), v"(.). 
Let us consider the strategies of the first and second player U* = {u* (t,x, e), PI* (e)} 

and V* = {v* (t, x, e), PI* (e)},where 

'* (t' X9 ') = 
UC(t), II r - r"(t) II < e 
a(*)* (t, 5, e), 11 x - tC (t) 11 > e (2.1) 

‘* (” =’ e, = 1 v= (t), I II = - 5s (4 II 4 e 
IA*)’ (t, 2, e), 11 x - z8 (t) (I > e (2.2) 

vtElt,,61, e>O 
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and the majorant PI*(e) common to both strategies is chosen so that the following inequality 
holds: 

g &:A* ftr t*. z** u*i P] - 2s ft) I/ < 8, +Q E it*, q P.3 

for the Euler polygonal lines at &a < E, 6 (A,) < &* (e), 6 (A,),< &* (a%). The functions u@~"(t,xF 
e), z~@)~(t, x, e) are defined in (1.4). 

It can be confirmed that V* E K&z*, LJ*). We nate that the bundle X It*, z+, U*, V*) 
consists of the unique trajectory z*(.). 

Let us write 7* = min (Zf It,, 61 : uI(t* (8)) = yz ( z, s* (z))) . Two cases are possible. 
a) 2, =6. Interestingly, this means that the second player, having obtained the informa- 

tion about the disclosed strategy of the first player U*, is now interested in tracing the 
trajectory z*(o) up to the termination of the game. We note that the problem studied in ILli 
refers to precisely this case. 

Theorem 1. Let the assumptions A and B both hold. Let the pair of measurable functions 
U* (a), Y* (+) solve Problem 3, and let condition z, =Q hold for the corresponding trajectory. 
Then the strategies U*, V* (Z-l)-(2.3) in the hierarchical differential game are aptimal. 

Proof. As was already noted, V* E'K(t,,z,, V*). Any other strategy from the set 
xx, U*) will also ensure the tracing of the trajectory z*(.). 

K (t> 
Therefore by disclosing u* the 

first player guarantees for himself the result pm(&'*) = u,(s* (6)). We shall show that this 
result cannot be improved by the first player. Let us assume the opposite, namely,that a 
strategy of the first player U+ and a number p>O exist such that the following inequality 
holds for any strategy of the second playes V+E K(t*,x.+, V’), and any motion x[.]E X (t*,t*, 

U’, f”r) : 

In particular, (2.4) holds for the motion x+[.]E X (t*rx_ U+, V+) for which inequality 
(1.3) holds, i.e. o2 (s' [@I) < 'yz (t, x+[t]) at all t E [t** 61. 

Taking into account the assumption that the vectogram Q* (t,5) (1.9) is convex, we can 
conclude that measurable functions u* (t),u,(t),t, Q t<6 exist, generating for the starting 
position (&a+) the trajectory ;*((;),which coincides with the trajectory z+I*], From this 
it follows that the trajectory * S J.S admissible in Problem 3. But the fact that inequal- 
ity (2.4) holds for this problem contradicts the statement that Iz* (*),Y* (*) is a solution of 
Problem 3. 

b) 'Q SC:*. Now we cannot assert any more #at the strategies U*, V* (2.1)-(2.3) will 
be optimal in the hierarchical differential game, since the second player is interested in 
tracing the trajectory x* (a) only up to the instant r*. From the instant '5* onwards he 
can "switch over" to the strategy 1 VW* (1.4) guaranteeing for himself the result o,(;t* (@))). 
Such a switch over may be found to be undesirable forthefirst player. If on the other hand 
we consider the hierarchical differential game with benevolent seoond player, then the follow- 
ing theorem holds. 

Theorem 2. Let assumptions A and B both hold , and let the pair of measurable functions 
U* (.), v* (7) solve Problem 3, with the inequality T, <6 holding for the corresponding 
trajectory, Then the strategies Us, V* (2.1)-(2.3) in the hierarchical differential game 
with benevolent second player will be optimal. 

The theorem is proved in the same manner as Theorem 1 I with any changes made fully under- 
stood. 

Thus we can come to the following conclusion. If amongst the solutions of Problem 3 
u*(.),v*(.) then Problem 1 has a solution represented by the strategy U* (2.11, (2,3). The 
strategy U* will be a solution of Problem 2 even more so. If on the other hand we have the 
inequality ~(6, for any solution of Problem 3, then the strategy u* (2-l), (2.3) con- 
structed for the arbitrary solution u* (.),v*(.),will be a solution of Problem 2. Here Problem 
i has no solution in the class of strategies considered, However, U* CBS be used as the basis 
for constructing a minimizing sequence of strategies. 

Next we shall use the strategies u* and Y*i2.1)~(2.3) to explain the meaning of the func- 
tions &(+) and &(*) introduced in the beginning of Sect.1 while determining the strategies. 
As we have already said, the strategy U*is constructed in such a manner that, after disclosing 
it the first player attempts to induce the second player to trace the trajectory r* (.). 
Here the Euler polygonal lines , to whose formation both players contribute, must not emerge 
outside the limits of the e-tubes constructed along the corresponding trajectories. The 
disclosure by the first player of a suitably chosen function &(-f enables the second player 
to choose, in his turn, the function gT (=), so that when &and &are partitioned into steps 

are the chosen values of the nbt exceeding &(s,) and & (at) resP;ctyel)y, where al and e, . 
accuracy parameters of the players Q-w 81 , the Euler polygonal lines will-not emerge out- 
side the limits of the tubee mentioned above. 
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Notes. 
0 

1 . The concept of using a penalty strategy in constructing the optimal strateT)" 
of the upper level player was proposed in /5/ for static hierarchical games, and developed 
further in /6/ for the dynamic hierarchical games. 

2O. In constructing the strategy U*(Z.l) it is essential that the penalty strategy 
specified by the function u(*)* (t,s, e), is universal /2/, i.e. suitable for all posrtions which 
may be encountered during the game. 

3O. We can waive the assumption that the vectogram Q*(t,z)(1.9) is convex. Then a 
solution of Problem 3 exists in the class of functions with values from the set of probabilistic 
measures on P x Q~ 

3. The strategies U*, V* (2.1)-(2.3) form,using the terminology of 19, 101, a condi- 
tional equilibrium strategy of two players. It can be either a coalitional mixed equilibrium 
strategy /9/, or a coalitional equilibrium counterstrategy /lo/, depending on the assumptions 
made concerning the amount of information received by the players about the controls realized 
by the partner, and on whether the solution of Problem 3 is attained in the class of measurable 
functions or in the class of function-measures. 

It is ture that the coalitional equilibrium strategies in /9, lO/ have a more complex 
structure resulting from the fact that the number of players is greater than two, and the 
penalty imposed on the deviant player by the remaining players depends on the index of the 
violator communicated from the outside. In the present,game of two players the penalty of the 
second player is included in the construction of the strategy of the first player U*, and the 
first player naturally makes no gain when deviating from the strategy II*. 

Let us find, amongst the solutions of Problem 3, a solution furnishing the index oa(.z (6)), 
with a minimum, and denote it by uP(*),uP(.). Such a solution exists under the assumptions 
made here. We denote by i?,V' the strategies of the first and second player obtained, 
respectively, from U* and V* (2-l)-(2.3) by replacing u* (.) by S(.) and u* (.) by vp (.). 
It can be confirmed that the strategies fl, VP formaParetopointofthe set of the coalitional 
equilibrium strategies which cannot be improved by the first player. 

4. Let the motion of a controlled system be described by an equation of the form 

The first player chooses the vector F1, and the second player chooses the vector F1and a 
scalar quantity 9, i.e. 

u=F,, u= 

The equations are restricted by the constraints 

The initial conditions % It,] = f., %' [t,] = %.' and the instant of game termination $ are 
given. The first(second) player tends to minimize the index u1 (% [Vi) (on (E KU)) of the form 

bi (% [@I) +I E ISI - Q (i) jl i = 1, 2 , (4.3) 

where '8 are given points in the plane (L,%*). 
Equation (4.1) can be regarded as an equation of motion of a material point of unit mass 

in the plane (%,, j,), under the action of a force generated by two players. It can be confirmed 
that the saddle point condition in a small game does not hold for system (4.1). For this 
reason the classes of the player strategies are actually determined by the assumptions made 
about the information made available to the players.concerning the controls of the partner 
realized at the particular instant. We shall assume that the second player knows at the in- 
stanttnotonlytheposition realised, but also the control of the first player, and can tiiere- 
fore formulate his control in the class of the counterstrategies /I, 2/. The first player 
knows only the position realised, and forms his control in the class of pure strategies. As 
we noted at the beginning of Sect-l, the results of the present paper remain valid in this 
case also; we must only replace the pure strategy of the second player by a counterstrategy. 
Thus at the instant t the first player chooses the control-force F,(t,E[tl,&‘[tj.~). and the 
second player and control-force F, (t, f [,I, 5' [tJ. F, [rl, 8) and control angle cp (I, % Dl* E' 111. F, LG, 8) 0 
by which the force F,is rotated (we shallassumethat anticlockwise rotation corresponds to a 
positive angle). The aim of the-i-t-h player is to bring the material point as close as pos- 
sible to the point a('). 

Putting in system (4.1) Y,= %1, Y1=: %,, Y3= %;,Y,= EL' and making the change of variable zl= 
Y1 + (6 - t) Y,, 12 = Y1 + (6 - 1) Y,, 13 = Y3, =I = Y1. we obtain a system whose first two equations have 
the form 



21’ = (6 - t) (F,, ~0s cp - F,, sin 9, + F,d 
ZL’ = (6 - 2) (F,, sin q + P,, cm ‘p + F,,) 

The indices (4.3), in the variables z,,z~, take the form 

393 

(4.4) 

bi (2 161) = n 5 [ej - 8) 11) i = ;: ) I _I/ i = 1, 2 (4.5) 

Since the indices (4.5) are determined by the values of the coordinates II and n, only, 
and the right-hand sidesof system (4.4) are independent of the remaining coordinates, we can 
conclude that it is sufficient to study the differential game in question for the truncated 
system (4.4) with indices (4.5). The initial conditions for system (4.4) will in this case 

be zl I&l = Z*S = &.I- (a - tL) 8,1', G [&+I = + = &- (8-t*)&. 
Conditions A and B are assumed to hold. 
The cost function y,(t,z) of the antagonistic game I?, in which the actions of the players 

are formalized in the classes (pure strategies of the first player - counterstrategies of 
the second player), and the dynamics is described by system (4.4) and the functions IF (t, z, 

e) = @)' (t, x, e) and v@)' (1, z, u, e) = (Fs (@' (t, z, F,, e), I$@' (t, z, Fl, e) which are analogoues of the functions 
(1.41, will be as follows: 

- cos ma)@- t)*,O 
I (4.6) 

L - &I F:“*=&$p Fi2)‘=- ,x_a~2~,/ (4.7) 

where q~[O,Zat) is the angle between the vectors .@) -z and &counted from the vector o(~)-z 
in the positive direction. 

Let us specify the intiaf conditions t*= 0, E*1 = @, Li = 
-0,4, Eu = I$, R,' = 0,6 and the following values of the parameters 

/ 
+p/ 6 = 4, al(l) = 3, e(r) = 2,s. a,t2) =i 3, tiI(2) = 0. Then we have I*, = 0, zq = 4. 
/ Let m0=n/3. We shall consider the following auxiliary problem: 

it is required to find a measurable vector function ~(t),t,< I<@ 

2. -- 
furnishing the quantity 11 L (8) - .(I) p with a minimum under the 

. condition 
II ZJ (6) - a(*) I dv, f& r(Q)* fes&,, @I 

c where r(.) is the trajectory of the system 

2' (0 = P w. II P w II d 2 (6 - 1) (4.8) 

f ’ 
D I 

satisfying the initial condition L [r*J = i*. 
Under the given initial conditions and values of the para- 

meters, one of the solutions p*(t), O< t< 4 of the auxiliary 
problem formulated above, generating the trajectory 

u 
a&f 

f 2 3 EC zi* (t) = 3 -&(4-t)* (4.9) 

%* (0 = (A(4 --ry+ -g (4 -0’ + i)'i 

is determined in terms of the continuous functions 

PI* (f) = q , 
dx:* (f) 

p2* (f} = 7 (4.10) 

We note that the function (4.6) remains constant along the trajectory I* f.) (4.9) . 
We can confirm that any pair of continuous functions (u* (.), U* (.)) satisfying the condi- 

tions 
a* (Q + v* (t) = P* V), 0 u* (f) II < (4 - f) (4.11) 

II y* (G II Q (4 - 0, VI = IO‘ 41 

furnishes a solution of Problem 3 for system (4.4) with indices (4.5), with the initial condi- 
tions and values of the parameters given., Conditions (4.11) are satisfied, in particular, by 
the functions 11' (t) = u* (t) = V, p* (t). 

Let us fix a pair (u*(.), o*(.)) which is a solution of Problem 3. Since here we have case 
2) of Sect.2, therefore, according to Theorem 2 the strategies U*,V* (2.1)-(2.3) constructed 
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on the basis of the pair (u*(.), ~j*(.)) and the tralectory z*(.) (4.9) are optimal in tne 
hierarchical differential game with a benevolent second player. 

The figure shows the motion z* [.I (4.9) in the plane (El, &), representing a unique notion 
of a bundle generated by the optimal strategies lJ* and F*. The motion commences at t, = (1 at 
the point C (i,6;1,6) and ends at the instant $= 4 at the point D(3,O; 1.0). The following 
values for the player indices are obtained: 01 (2' 141) = 1,8, 4 (2' [4]) = l,o. 

Without going into detail we note that for any arbitrarily small i>O, a strategy sf 
the first player L'<, can be found which will guarantee to this player a result, in the 
hierarchical game without presupposing the benevolence of the second player, differing from 
the result given above by a quantity not exceeding 5. 
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